Nanostrukturali Metall Sirtlarda Raman Signalining Kuchayishi
Ahmedov Sherzodjon To‘lqin o‘g‘li
Chirchiq davlat pedagogika universiteti
Keywords: Raman sochilishi, SKRS, MOP, RRS
Abstract
Bugungi kunda moddalarning spektroskopik va analitik tahlillarida Raman spektroskopiyasi keng qo‘llanilib kelmoqda. So‘nggi yillarda rivojlanib borayotgan nanostrukturali metall yuzalarda adsorbsiyalangan molekulalarda Raman sochilishining kuchayishidan olingan natijalar muhim va yuqori amaliy ahamiyatga ega ma’lumotlar beradi. Ushbu maqolada SKRSning yuzaga kelish tarixi, Raman signalining kuchayish mexanizmini tushuntirishga va uning imkoniyatlarini turli sohalarda yuqori darajada sezgir ilovalarning har xil turlarida qo‘llash imkoniyatlarini ko‘rsatib berildi.
References
Xu, K.; Zhou, R.; Takei, K.; Hong, M. Toward Flexible Surface-Enhanced Raman Scattering (Sers) Sensors for Point-of-Care Diagnostics. Adv. Sci. 2019, 6, 1900925.
Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.
Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.
Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.
Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. Sers: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25.
Zhang, D.; Liang, P.; Chen, W.; Tang, Z.; Li, C.; Xiao, K.; Jin, S.; Ni, D.; Yu, Z. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy. Microchim. Acta 2021, 188, 370.
Zhao, H.; Jin, J.; Tian, W.; Li, R.; Yu, Z.; Song, W.; Cong, Q.; Zhao, B.; Ozaki, Y. Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments. J. Mater. Chem. A 2015, 3, 4330–4337.
Alyami, A.; Mirabile, A.; Iacopino, D. Fabrication of transparent composites for non-invasive Surface Enhanced Raman Scattering (SERS) analysis of modern art works. Herit. Sci. 2019, 7, 87.
Bao, Y.; Zhang, X.; Xiang, X.; Zhang, Y.; Zhao, B.; Guo, X. Revealing the effect of intramolecular interactions on DNA SERS detection: SERS capability for structural analysis. Phys. Chem. Chem. Phys. 2022, 24, 10311–10317.
Barbiellini, Bernardo (February 2017). "Enhancement of Raman scattering from molecules placed near metal nanoparticles". Low Temperature Physics.159–161.
Strommen, Dennis P.; Nakamoto, Kazuo (August 1977). "Resonance raman spectroscopy". Journal of Chemical Education. 54 (8): 474.
Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing (2016). "Ultrasensitive surface-enhanced Raman scattering detection in common fluids". Proceedings of the National Academy ofSciences. 113 (2): 268–273.
"Single-molecule detection of contaminants, explosives or diseases now possible “Kurzweil”
Smith, E.; Dent, G., Modern Raman Spectroscopy: A Practical Approach John Wiley and Sons: 2005 ISBN 0-471-49794-0
Kukushkin, V. I.; Van’kov, A. B.; Kukushkin, I. V. (2013). "Long-range manifestation of surface-enhanced Raman scattering". JETP Letters. 98 (2): 64–
Tsuneda, Takao; Iwasa, Takeshi; Taketsugu, Tetsuya (2019-09-07). "Roles of silver nanoclusters in surface-enhanced Raman spectroscopy"
Sherzodjon To‘Lqin O‘G‘Li Ahmedov, Bahodir Xudoyberganovich Eshchanov, and Jalol Baxtiyor O‘G‘Li Shodmonov. "AROMATIK UGLEVODORODLARDA MOLEKULALARARO O‘ZARO TA’SIRLASHUVNING RAMAN SPEKTRLARIDA NAMOYON BO‘LISHI" Academic research in educational sciences, vol. 3, no. 3, 2022, pp. 693-705.
Shodmanov, J. B., Eshchanov, B. X., Ahmedov, Sh. T. (2022). Aromatik uglevodorodlarda yorug‘likning noqutblangan molekulyar sochilishi. Academic research in educational sciences, 3(3), 1127-1137.
Sherzodjon Ahmedov, Gulnoza Djumayeva. (2022). SURFACE ENHANCED RAMAN SCATTERING: MECHANISM AND PRACTICAL APPLICATIONS. Galaxy International Interdisciplinary Research Journal, 10(12), 983–991. Retrieved from https://www.giirj.com/index.php/giirj/article/view/4454
B. Eshchanov, Sh. Ahmedov. (2022). METHODOLOGY FOR PROCESSING RAMAN SPECTRAL RESULTS: QUANTUM-CHEMICAL CALCULATION. Web of Scientist: International Scientific Research Journal, 3(12), 459–470. https://doi.org/10.17605/OSF.IO/8JEY9
Lombardi, John R.; Birke, Ronald L.; Lu, Tianhong; Xu, Jia (1986). "Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions". The Journal of Chemical Physics. 84 (8): 4174.
Lin, L.; Bi, X.; Gu, Y.; Wang, F.; Ye, J. Surface-enhanced Raman scattering nanotags for bioimaging. J. Appl. Phys. 2021, 129, 191101.
Su, G.; Dang, L.; Liu, G.; Feng, T.; Wang, W.; Wang, C.; Wei, H. MOF-Derived hierarchical porous 3D ZnO/Ag nanostructure as a reproducible SERS substrate for ultrasensitive detection of multiple environmental pollutants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120818.
Su, G.; Dang, L.; Liu, G.; Feng, T.; Wang, W.; Wang, C.; Wei, H. MOF-Derived hierarchical porous 3D ZnO/Ag nanostructure as a reproducible SERS substrate for ultrasensitive detection of multiple environmental pollutants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120818.
Shao, Q.; Zhang, X.; Liang, P.; Chen, Q.; Qi, X.; Zou, M. Fabrication of Magnetic Au/Fe3o4/Mil-101 (Cr)(Af-Mil) as Sensitive Surface-Enhanced Raman Spectroscopy (Sers) Platform for Trace Detection of Antibiotics Residue. Appl. Surf. Sci. 2022, 596, 153550.
Shao, Q.; Zhang, D.; Wang, C.-E.; Tang, Z.; Zou, M.; Yang, X.; Gong, H.; Yu, Z.; Jin, S.; Liang, P. Ag@MIL-101(Cr) Film Substrate with High SERS Enhancement Effect and Uniformity. J. Phys. Chem. C 2021, 125, 7297–7304.
Shao, Q.; Zhang, D.; Wang, C.-E.; Tang, Z.; Zou, M.; Yang, X.; Gong, H.; Yu, Z.; Jin, S.; Liang, P. Ag@MIL-101(Cr) Film Substrate with High SERS Enhancement Effect and Uniformity. J. Phys. Chem. C 2021, 125, 7297–7304.
Chen, Q.-Q.; Hou, R.-N.; Zhu, Zhang, L.; Tian, Z.-Q.; Li, J.-F. Au@ZIF-8 Core–Shell Nanoparticles as a SERS Substrate for Volatile Organic Compound Gas Detection. Anal. Chem. 2021, 93, 7188–7195.
Cai, Y.; Wu, Y.; Xuan, T.; Guo, X.; Wen, Y.; Yang, H. Core–Shell Au@ Metal–Organic Frameworks for Promoting Raman Detection Sensitivity of Methenamine. ACS Appl. Mater. Interfaces 2018, 10, 15412–15417
Fu, Y.; Xin, M.; Chong, J.; Li, R.; Huang, M. Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde. J. Mater. Sci. 2021, 56, 4151–4160.
Phan-Quang, G.C.; Yang, N.; Lee, H.K.; Sim, H.Y.F.; Koh, C.S.L.; Kao, Y.C.; Wong, Z.C.; Tan, E.K.M.; Miao, Y.E.; Fan, W.; et al. Tracking Airborne Molecules from Afar: Three-Dimensional Metal–Organic Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. ACS Nano 2019, 13, 12090–12099.
Liu, X.; He, L.; Zheng, J.; Guo, J.; Bi, F.; Ma, X.; Zhao, K.; Liu, Y.; Song, R.; Tang, Z. Solar-Light-Driven Renewable Butanol Separation by Core–Shell Ag@ Zif-8 Nanowires. Adv. Mater. 2015, 27, 3273–3277.
Yang, Z.; Liu, T.; Wang, W.; Zhang, L. Stacked hexagonal prism of Ag@Ni-MOF-1 as functionalized SERS platform through rational integration of catalytic synthesis of dopamine-quinone at physiological pH with a biomimetic route. Chem. Commun. 2020, 56, 3065–3068.
Zheng, J.; Yan, J.; Qi, X.; Zhang, X.; Li, Y.; Zou, M. AgNPs and MIL-101(Fe) self-assembled nanometer materials improved the SERS detection sensitivity and reproducibility. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119396.
Zhang, Y.; Hu, Y.; Li, G.; Zhang, R. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchim. Acta 2019, 186, 477.