Роль тканевого калликреина в нейропротекции и нейровоспалении у больных с изолированной черепно-мозговой травмой.
Кенжаев Л.Т
Ташкентская Медицинская Академия Кафедра анестезиологии и реаниматологии
Мухаммадова М.Б
Ташкентская Медицинская Академия Кафедра анестезиологии и реаниматологии
Keywords: ЗЧМТ, шкала GLASGOW, тканевой калликреин
Abstract
Закрытая черепно-мозговая травма (ЧМТ) является довольно распространенным явлением и ежегодно поражает миллионы людей во всем мире. В структуре травм наиболее драматичной является черепно-мозовая травма. ЗЧМТ остаётся одной из наиболее важных проблем здравоохранения. Во всех странах мира наблюдается увеличение частоты случаев ЗЧМТ. Каллидиногеназа - калликреин ткани, компонент калликреин - кининовой системы (KKS), обладает защитным действием против ишемии мозга
References
Восстановление сознания под влиянием каллидиногеназы наблюдалось быстро и
сокращало сроки пребывания больных в реанимационном отделении.
Использование Каллидиногеназы (тканевой калликрин) при изолированной ЗЧМТ
улучшает общее состояние больных и клинико-биохимические лабораторные данные.
Противовоспалительные цитокины в эффекте Калгена повышение приводит к
нейропротекции мозговой ткани. Параллельно снижение провоспалительных цитокинов
приводит к блокированию нейровоспалительного процесса.
Используемая литература
M.V. Nikiforov, A.A. Korolev clinical and epidemiological analysis of traumatic brain injury the
role of nutritional support in patients with long-term impairment of consciousness Medico-Biological
and Socio-Psychological Problems of Safety in Emergency Situations. 2020. N 2 DOI
25016/2541-7487-2020-0-2-32-43.
Shakotko A.P., Marutyan Z.G., Kinishemova A.Y., et al. Safety of mixed artificial nutrition in
patients with severe multisystem craniocerebral trauma. Sklifosovsky Journal of Emergency Medical
Care. 2017; 6(3): 257–262. DOI: 10.23934/2223-9022-2017-6-2-257-262 (In Russian).
Prabhu S.D. Cytokine-induced modulation of cardiac function. Circ. Res. 2004; 95: 1140–53.
Sychev A.A., Savin I.A., Goryachev A.S., Tenedieva V.D., Oshorov A.V., Polupan A.A., Gavrilov
A.G., Potapov A.A. brain natriuretic peptide as a marker of severity of patient’s condition after severe
traumatic brain injury. Anesteziologiya i reanimatologiya (Russian Journal of Anаеsthesiology and
Reanimatology) 2016; 61(2): 108-112. (In Russ.) DOI: 10.18821/0201 7563-2016-61-2-108-112.
Chamorro A, Hallenbeck J. The Harms and Benefits of Inflammatory and Immune Responses in
Vascular Disease. Stroke. 2006;37:291-3.
Barone FC, Feuerstein GZ. Inflammatory Mediators and Stroke: New Opportunities for Novel
Therapeutics. J Cereb Blood Flow Metab. 1999;19:819-34.
Becker KJ. Inflammation and Acute Stroke. Curr Opin Neurol. 1998;11:45-9.
Stanimirovic DB, Wong J, Shapiro A, Durkin JP. Increase in Surface Expression of Icam-1, Vcam1 and E-Selectin in Human Cerebromicrovascular Endothelial Cells Subjected to Ischemia-Like
Insults. Acta Neurochir Suppl. 1997;70:12-6.
Danton GH, Dietrich WD. Inflammatory Mechanisms after Ischemia and Stroke. J Neuropathol
Exp Neurol. 2003;62:127-36.
Basu A, Lazovic J, Krady JK, Mauger DT, Rothstein RP, Smith MB, et al. Interleukin-1 and the
Interleukin-1 Type 1 Receptor Are Essential for the Progressive Neurodegeneration That Ensues
Subsequent to a Mild Hypoxic/Ischemic Injury. J Cereb Blood Flow Metab. 2005;25:17-29.
Matthew V. Russo and Dorian B. McGavern Inflammatory neuroprotection following traumatic
brain injury 2016 August 19; 353(6301): 783–785. doi:10.1126/science.aaf6260 Author manuscript;
available in PMC 2017 January 24.
Pandolfi F., Altamura S., Frosali S., et al. Key Role of DAMP in Inflammation, Cancer, and
Tissue Repair. Clin Ther. 2016; 38(5):1017–1028. DOI: 10.1016/j.clinthera.2016.02.028.
Nicaise V., Roux M., Zipfel C. Recent advances in PAMP-Triggered immunity against bacteria:
Pattern recognition receptors watch over and raise the alarm. Plant Physiol. 2009; 150(4): 1638–1647.
DOI: 10.1104/pp.109.139709.
Gong T., Liu L., Jiang W., et al. DAMP-sensing receptors in sterile inflammation and
inflammatory diseases. Nat Rev Immunol. 2020; 20(2): 95–112. DOI: 10.1038/s41577-019-0215-7.
Suwara M.I., Green N.J., Borthwick L.A., et al. IL-1a released from damaged epithelial cells is
sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal.
Corps KN, Roth TL, McGavern DB. JAMA Neurol. 2015; 72:355–362. [PubMed: 25599342].
Johnson VE, et al. Brain. 2013; 136:28–42. [PubMed: 23365092]
Zudova A.I., Sukhorosova A.G., Solomatina L.V. Traumatic Brain Injury and Neuroinflammation: Review of the Main Biomarkers. Acta biomedica scientifica. 2020; 5(5): 60-67.
doi: 10.29413/ABS.2020-5.5.8.
Casault C, Al Sultan AS, Banoei M, Couillard P, Kramer A, Winston BW. Cytokine responses in
severe traumatic brain injury: where there is smoke, is there fire? Neurocrit Care. 2019; 30(1): 22-
doi: 10.1007/s12028-018-0522-z.
Rodney T, Osier N, Gill J. Pro- and anti-inflammatory biomarkers and traumatic brain injury
outcomes: A review. Cytokine. 2018; 110: 248-256. doi: 10.1016/j.cyto.2018.01.012.
Bogoslovsky T, Gill J, Jeromin A, Davis C, Diaz-Arrastia R. Fluid biomarkers of traumatic brain
injury and intended context of use. Diagnostics (Basel). 2016; 6(4): 37. doi:
3390/diagnostics6040037.
Yang DB, Yu WH, Dong XQ, Zhang ZY, Du Q, Zhu Q, et al. Serum macrophage migration
inhibitory factor concentrations correlate with prognosis of traumatic brain injury. Clin Chim Acta.
; 469: 99-104. doi: 10.1016/j.cca.2017.03.030.
Feng MJ, Ning W Bin, Wang W, Lv ZH, Liu XB, Zhu Y, et al. Serum S100A12 as a prognostic
biomarker of severe traumatic brain injury. Clin Chim Acta. 2018; 480: 84-91. doi:
1016/j.cca.2018.01.044.
Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K, et al. Inflammatory
cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state
following acute brain injury. J Neuroinflammation. 2016; 13: 40. doi: 10.1186/s12974-016 0500-3.
Lagerstedt L, Egea-Guerrero JJ, Rodríguez-Rodríguez A, Bustamante A, Montaner J, El Rahal
A, et al. Early measurement of interleukin-10 predicts the absence of CT scan lesions in mild
traumatic brain injury. PLoS One. 2018; 13(2): e0193278. doi: 10.1371/ journal.pone.0193278.
Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and biomarker discovery in
traumatic brain injury. J Neurotrauma. 2018; 35(16): 1831-1848. doi: 10.1089/neu.2017.5326.
Anada RP, Wong KT, Jayapalan JJ, Hashim OH, Ganesan D. Panel of serum protein biomarkers
to grade the severity of traumatic brain injury. Electrophoresis. 2018; 39(18): 2308-2315. doi:
1002/elps.201700407.
Pichavant M., Taront S., Jeannin P., et al. Impact of Bronchial Epithelium on Dendritic Cell
Migration and Function: Modulation by the Bacterial Motif KpOmpA. J Immunol. 2006; 177(9):
– 5919. DOI: 10.4049/jimmunol.177.9.5912.
Marongiu L., Gornati L., Artuso I., et al. Below the surface: The inner lives of TLR4 and TLR9.
J Leukoc Biol. 2019; 106(1): 147–160. DOI: 10.1002/JLB.3MIR1218-483RR.
Herr C., Shaykhiev R., Bals R. The role of cathelicidin and defensins in pulmonary inflammatory
diseases. Expert Opin Biol Ther. 2007; 7(9): 1449–1461. DOI: 10.1517/14712598.7.9.1449.
Hertzog P., Forster S., Samarajiwa S. Systems biology of interferon responses. J Interferon
Cytokine Res. 2011; 31(1): 5–11.DOI: 10.1089/jir.2010.0126.
Hamza T., Barnett J.B., Li B. Interleukin 12 a key immunoregulatory cytokine in infection
applications. Int J Mol Sci. 2010; 11(3): 789– 806. DOI: 10.3390/ijms11030789.
Brat D.J., Bellail A.C., Van Meir E.G. The role of interleukin-8 and its receptors in gliomagenesis
and tumoral angiogenesis. Neuro Oncol. 2005; 7(2): 122–133. DOI: 10.1215/S1152851704001061.
Walter M.R. The molecular basis of IL-10 function: from receptor structure to the onset of
signaling. Curr Top Microbiol Immunol. 2014; 380: 191–212. DOI: 10.1007/978-3-662-43492-5_9.
E.P. Zinina, S.V. Tsarenko, D.Y. Logunov, A.I. Tukhvatulin, A.V. Babayants, А.А. Avramov.
The role of proinflammatory and anti-inflammatory cytokines in bacterial pneumonia. Review.
Annals of Critical Care. 2021;1:77–89. DOI: 10.21320/1818-474X-2021-1-77-89.
Igic R. Four decades of ocular renin-angiotensin and kallikrein-kinin systems (1977-2017). Exp
Eye Res. (2017) 166:74–83. doi: 10.1016/j.exer.2017.05.007.
Figueroa CD, Marchant A, Novoa U, et al.Differential distribution of bradykinin B2 receptors in
the rat and human cardiovascular system. Hypertension 2001; 37: 110–120.
Xia C-F, Smith RS, Shen B, et al. Postischemic brain injury is exacerbated in mice lacking the
kinin B2 receptor. Hypertension 2006; 47: 752–761.