

DETERMINATION OF WATER-SOLUBLE VITAMINS CONTENT IN YOGURT USING THE HPLC METHOD

Furqatjon Begmatov

Master's student at the International Institute of Food Technology and Engineering, Fergana, Uzbekistan E-mail: <u>furqatturkistanli@gmail.com</u> Barnokhon Sattarova Associate Professor, Fergana State Technical University, Fergana, Uzbekistan E-mail: sattarovabarno1967@gmail.com

Abstract

In this study, a high-performance liquid chromatography (HPLC) method based on the HPLC technique was developed for the determination of water-soluble vitamins (B₁, B₂, B₃, B₆, B₉, B₁₂, PP, and C) in yogurt. Standard vitamin solutions were prepared in 0.1 N hydrochloric acid (HCl) and 0.025% sodium hydroxide (NaOH) solutions and analyzed using a Shimadzu LC-40 Nexera Lite system equipped with a Shim-pack GIST C18 column under gradient elution conditions. The yogurt sample extract was prepared by ultrasonic-assisted extraction at 60°C for 20 minutes with 0.1 N HCl, followed by filtration through a 0.22 μ m syringe filter prior to analysis.

The results indicated that, per 100 g of yogurt, vitamin B_6 was present at the highest concentration (11.515 mg), while vitamin C was found at 47.435 mg; vitamin B_{12} was not detected. The method demonstrated high reproducibility and sensitivity, making it suitable for use in food quality control applications.

Keywords: yogurt; water-soluble vitamins; HPLC method; high-performance liquid chromatography; vitamin content determination

Introduction

Reagents and Equipment

Vitamin B12 was sourced from Rhydburg Pharmaceuticals (Germany), vitamin C from Carl Roth GmbH (Germany), vitamin B₉ from DSM Nutritional Products GmbX (Germany), and vitamins B1, B2, B3, B6, and PP from BLDPharm (China). HPLC-grade water, acetonitrile, glacial acetic acid, and sodium hydroxide were used as reagents. The quantification of water-soluble vitamins in the yogurt extract was performed using a highperformance liquid chromatography (HPLC) system, LC-40 Nexera Lite, manufactured by Shimadzu Corporation (Japan) [1].

Preparation of Standard Solutions

Standard solutions of vitamins C (CAS 50-81-7), B₁ (CAS 59-43-8), B₆ (CAS 58-56-0), B₃ (CAS 59-67-6), B₁₂ (CAS 68-19-9), and PP (CAS 98-92-0) were prepared by dissolving 5 mg of each vitamin in 50 mL of 0.1 N hydrochloric acid (HCl) to achieve a concentration of 100 mg/L. Standard solutions of vitamins B₂ (CAS 83-88-5) and B₉ (CAS 59-30-3) were prepared by dissolving 5 mg of each in 50 mL of 0.025% sodium hydroxide (NaOH) solution. Subsequently, 200 μ L aliquots of the B₁, B₆, B₃, B₁₂, and PP vitamin standard solutions were combined to prepare a mixed standard with a concentration of 14.286 mg/L for each vitamin.

Volume 3, Issue 04, April 2025 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

Further dilutions were performed to obtain standard solutions with concentrations of 7.143, 3.571, and 1.786 mg/L.

Similarly, vitamin C standard solutions were prepared at concentrations of 286, 143, 71.5, and 57.2 mg/L. Distilled water was used as the blank (0 mg/L) for calibration curve construction.

Preparation of Sample Extract

For the extraction of water-soluble vitamins, 1.0 g of the yogurt sample was accurately weighed into a 50 mL conical flask, and 25 mL of 0.1 N HCl solution was added. The mixture was subjected to ultrasonic extraction using a GT SONIC-D3 ultrasonic bath (China) at 60°C for 20 minutes. After extraction, the mixture was cooled to room temperature, filtered, and the volume was adjusted to 25 mL with distilled water in a volumetric flask. An aliquot of 1.5 mL of the extract was then filtered through a 0.22 μ m syringe filter into a vial and used for HPLC analysis.

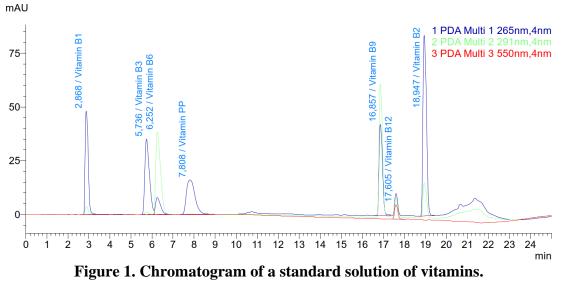
Chromatographic Conditions

Determination of Vitamins. The standard solutions and sample extracts were analyzed using a high-performance liquid chromatography (HPLC) system comprising the LC-40D pump, SIL-40 autosampler, and SPD-M40 photodiode array (PDA) detector, operated with LabSolutions software version 6.92 (Shimadzu Corporation, Japan). Separation was performed on a reversed-phase Shim-pack GIST C18 column (150×4.6 mm; 5 µm particle size, Shimadzu, Japan) using a gradient mobile phase consisting of acetonitrile (solvent A) and 0.25% aqueous acetic acid solution (solvent B), as detailed in Table 1.

The injection volume was set at 10 µL, the flow rate at 0.6 mL/min, and the column temperature maintained 40°C. oven was at The analytical signals (peak areas) for each vitamin were recorded at three detection wavelengths: 265 nm. 291 nm. and 550 (Figures 1 - 3). nm For the determination of vitamin C, a specific 15-minute gradient program was applied (Table 2), with detection performed at a wavelength of 265 nm.

Time, minute	Acetonitrile (A), %	0.5% acetic acid (B), %	
0	0	100	
3	0	100	
14	20	80	
17	50	50	
18	0	100	
25	Finish		

Table 1. Gradient Program for Vitamin D	Determination
---	---------------


Table 2. Mobile phase gradient program for vitamm C quantification.				
Time, minute	Acetonitrile (A), %	0.5% acetic acid (B),		
Time, initiate		%		
0	0	100		
2	0	100		
6	50	50		
6,01	0	100		
15	Finish			

Diversity Research: Journal of Analysis and Trends

Volume 3, Issue 04, April 2025 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

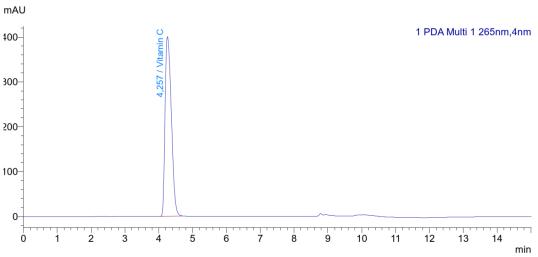


Figure 2. Chromatogram of a vitamin C standard solution.

Results

Determination of vitamins in the sample extract. A chromatogram of the sample extract (Figures 3-4) was obtained and based on the results, the amounts of vitamins in 100 g of the sample were calculated using the following formula and presented in Table 3.

$$X = \frac{C_{vit} \cdot V_{extract}}{m_{sample}} \cdot 100 \ g$$

Here,

X – the amount of vitamins in 100 grams of the sample, expressed in mg; C_{vit} – the concentration of the vitamin in the extract determined by the HPLC method, expressed in mg/L;

V_{extract} – the volume of the sample extract, expressed in liters (L);

m_{samplem} - the mass of the sample used for extraction, expressed in grams (g).

Diversity Research: Journal of Analysis and Trends

Volume 3, Issue 04, April 2025 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

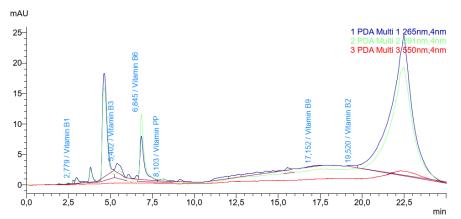


Figure 3. Chromatogram of the determination of vitamins in the sample extract.

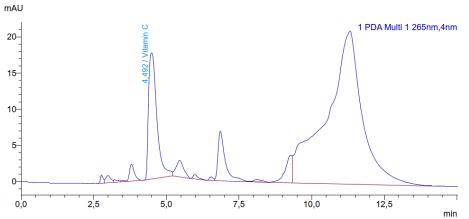


Figure 4. Chromatogram of vitamin C in the sample extract.

	Capture	Concentration,	Amount		
Vitamin	time, sec	mg/l	in 100 g of		
			sample, mg		
Vitamin B ₁	2.779	0.197	0.493		
Vitamin B ₃	5.402	0.943	2.358		
Vitamin PP	8.103	0.305	0.763		
Vitamin B ₉	17.152	0.113	0.283		
Vitamin B ₂	19.52	0.398	0.995		
Vitamin B ₆	6.845	4.606	11.515		
Vitamin B ₁₂	Not	0	0.000		
	specified	0	0.000		
Vitamin C	4.492	18.974	47.435		

Table 3. Amount of vitamins in the extract and retention times.

Conclusions

In this study, a high-performance liquid chromatography (HPLC) method was successfully developed and applied for the determination of water-soluble vitamins (B_1 , B_2 , B_3 , B_6 , B_9 , B_{12} , PP, and C) in yogurt. The sample preparation involving ultrasonic-assisted extraction with 0.1 N hydrochloric acid, followed by HPLC analysis using a reversed-phase C18 column under gradient elution, proved to be effective for vitamin detection.

Volume 3, Issue 04, April 2025 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

The results demonstrated that vitamin B_6 (11.515 mg/100 g) and vitamin C (47.435 mg/100 g) were present in significant amounts, while vitamin B_{12} was below the detection limit. The method showed good reproducibility, sensitivity, and reliability, suggesting its suitability for quality control of food products containing water-soluble vitamins.

Future research is recommended to expand the method's application to different dairy matrices and to investigate the stability of the detected vitamins under various storage and processing conditions.

References

1. Asqarov, I. R., Abdullayev, S. S. O., Mamatqulova, S. A., Abdulloyev, O. S., & Abdulloyev, S. X. (2024). Development of a method for determining the amount of watersoluble vitamins using HPLC (on the example of cilantro). *Fergana State University Scientific Journal*, 30(5), 61. Retrieved from <u>https://journal.fdu.uz/index.php/sjfsu/article/view/4679</u>

2. Shimadzu Corporation. (2020). LC-40 Nexera Lite High Performance Liquid Chromatography System: Operation Manual.

3. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. *Methods in Enzymology*, 299, 152–178.

4. Macheix, J. J., Fleuriet, A., & Billot, J. (1990). *Fruit Phenolics: Chemistry, Phytochemistry and Modulation of Quality.* CRC Press.

5. Shodiev, D. A. U., & Najmitdinova, G. K. K. A. (2021). Specific aspects of food production. *Universum: Technical Sciences*, 3–2(84), 91–94.

6. Dilshodjon, S., & Hojiali, Q. (2022). Importance of food colorings in the food industry. *Universum: Technical Sciences*, 11–8(104), 23–25.

7. Shodiev, D. A. (2022). The significance of biological quantities of trace elements in plants. *Formation of Psychology and Pedagogy as Interdisciplinary Sciences*, 1(9), 297–301.

8. Shodiev, D. A. U., & Kurbanov, K. A. U. (2022). Prospects for the use of food additives in the food industry. *Universum: Technical Sciences*, 5–7(98), 24–26.

9. Shodiev, D. A. U., & Rasulova, U. N. K. (2022). The importance of amaranth oil in medicine. *Universum: Technical Sciences*, 1–2(94), 69–72.

10. Shodiev, D., Haqiqatkhon, D., & Zulaykho, A. (2021). Useful properties of the amaranth plant. *ResearchJet Journal of Analysis and Inventions*, 2(11), 1–4.

11. Shodiev, D., & Hojiali, Q. (2021). Medicinal properties of amaranth oil in the food industry. *Interdisciplinary Conference of Young Scholars in Social Sciences*, 205–208.

12. Shodiev, D. A., & Najmitdinova, G. K. (2021). Food additives and their significance. *Universum: Technical Sciences*, 10–3(91), 30–32.

13. Kholdarov, D. M., Shodiev, D. A., & Rayimberdieva, G. G. (2018). Geochemistry of trace elements in elementary landscapes of the desert zone. *Actual Problems of Modern Science*, (3), 77–84.

14. Kholdarov, D., et al. (2021). General characteristics and mechanical composition of saline meadow saz soils. *Conference Proceedings*.

15. Dilshodjon, S., & Hojiali, Q. (2022). Nutritional value of food supplements and their impact on the body. *Universum: Technical Sciences*, 12–7(105), 32–35.

16. Dilshod, S., Hojiali, Q., & Gulbakhoroy, S. (2023). Biological properties of the medicinal plant amaranth and its significance in the food industry. *Universum: Technical Sciences*, 3–5(108), 19–21.

17. Dilshod, S., & Hojiali, Q. (2023). Chemical analysis of amaranth oil and its beneficial properties. *Universum: Technical Sciences*, 2–6(107), 29–30.

Volume 3, Issue 04, April 2025 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

18. Dilshod, S., Hojiali, Q., & Mohidil, A. (2023). The value of compounds that change the color of food raw materials and finished products. *Universum: Technical Sciences*, 4–7(109), 52–54.

19. Dilshod, S., Hojiali, Q., & Mohidil, A. (2023). Features of the use of valuable natural food dyes in the food industry. *Universum: Technical Sciences*, 5–7(110), 56–58.

20. Shodiev, D. A., & Abduvalieva, M. A. (2023). Biological research of local medicinal plants used in animal feeding in agriculture. *Modern Trends in Biology: Problems and Solutions*, 1(4), 687–689.

21. Shodiev, D., & Abduvalieva, M. (2023). The value of amaranth food additives in the food industry. *Texas Journal of Agriculture and Biological Sciences*, 23, 67–71.

22. Ergashov, A. A., & Abrolov, A. A. (2024). Adsorbents used in industry and the challenges of their application. *Research and Implementation*, 2(7), 26–31.

23. Kodirov, Z. Z., & Ahmadjonovich, A. A. (2023). Research and control measures for powdery mildew (oidium) diseases in vine fruit production. *European Journal of Emerging Technology and Discoveries*, 1(2), 86–92.

24. Adahamjonovich, A. A. (2022). Diarrhea and healing function from watermelon seed. *International Journal of Advance Scientific Research*, 2(5), 84–89.

25. Nabievna, S. B., & Adxamjonovich, A. A. (2021). The chemical composition and properties of chicken meat. *Innovative Technologica: Methodical Research Journal*, 2(10), 25–28.

26. Mahammadjon, Q., & Anvar, A. (2021). Bioazot-N biopreparations in agriculture. *Innovative Technologica: Methodical Research Journal*, 2(11), 101–105.

27. Madaliyev, T. A., Goppirjonovich, Q. M., & Abrolov, A. A. (2020). Bioprospecting of exopolysaccharide-producing bacteria from various natural ecosystems for biopolymer synthesis from distillery waste. *Universum: Chemistry and Biology*, 12–1(78), 6–9.

28. Qosimov, M. G., Madaliyev, T. A., & Abrolov, A. A. (2019). Improving the quality of grains grown in the conditions of the Fergana region. *Internauka*, 40–2, 28–30.

29. Ibragimov, A. A., et al. (2019). On the prospects for the development of the fishing industry in Uzbekistan and the fishery use of reservoirs in the Fergana Valley. *Universum: Technical Sciences*, 12–3(69), 21–23.

30. Kurbanov, J. Kh., et al. (2019). Heat exchange intensity during heating of NH₂COONH₄ solution in a heat exchanger with highly efficient pipes. *Universum: Technical Sciences*, 12–2(69), 24–27.