

Role of deep learning in dentistry an overview

 Muhammad Adnan Hasnain¹, Hassaan Malik², Dr.Muhammad Irfan³, Binyameen⁴
 ¹Department of Computer Science, National College of Business Administration and Economics Lahore, Pakistan
 ²Department of Computer Science, National College of Business Administration and Economics Lahore, Pakistan
 ³Basic Health Unit Rojhan, Pakistan
 ⁴Department of Computer Science, National College of Business Administration and Economics Lahore, Pakistan

Abstract:

Purpose: Deep learning-based artificial intelligence (AI) can solve real-world problems in all fields, including medicine and dentistry. This study conducts a literature review focusing on oral and craniofacial radiology deep learning.

Martials and Method: Using PubMed, IEEE explore databases, and Scopus a systematic review identified English literature papers employing deep learning.25 studies examined number of training data, network architecture, assessment outcome, pros, cons, study topic, and imaging modalities.

Results: As the primary component of the network, a convolutional neural network, or CNN, was utilized. There has been a general trend towards an increase in the amount of published papers and training datasets that deal with various aspects of dentistry.

Conclusion: In order to put deep learning theory into practice in the field of dentistry, oral and dental data need to be created, and data needs to be standardized.

Keywords: Deep Learning; Artificial Intelligence; Dentistry; Radiology

Introduction:

Artificial intelligence (AI) has progressed from the idea of strong AI, which replicates human intelligence, to the application of weak AI, which can solve certain issues. Strong AI attempts to replicate human intelligence.¹Research in the field of weak artificial intelligence looks into approaches to build algorithms that are able to learn from data and make judgments. The computer science field known as machine learning creates algorithms by following the capabilities of individuals by data.²Neural networks (NNs), which are made up of nodes and weights, were among the initial kinds of AI algorithms that were ever invented. They are one of the forms of AI. The quantity and quality of training examples are what enable these networks to adjust the connection weights, which in turn determines the amount of computational power that can be extracted from these networks. Network designs that employ a high number of layers and a big number of layers are alluded to as "deep" learning neural networks. On the other hand, simple network structures with just a few levels are referred to as "shallow" learning neural networks.³ processing large and complicated images typically

Diversity Research: Journal of Analysis and Trends Volume 1, Issue 1, April, 2023 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

requires the application of deep learning structures known as convolutional neural networks (CNNs). These structures are capable of extracting many characteristics from abstracted layers of filters, which makes them ideal for this task. The development of self-learning back-propagation algorithms, which progressively refine the conclusions derived from the data, as well as advancements in processing capacity, are helping to speed up the process of deep learning. Deep learning, which is a subfield of artificial intelligence, has made it possible to apply AI to the solution of issues that occur in real life and has spread its usage to all aspects of society.⁴ Since the clinical diagnosis of deep learning algorithms in the medical profession is getting closer to that of human experts, the purpose of computer-assisted diagnosis is shifting from that of a tool for providing a "second opinion" to one that is more collaborative.³ Artificial intelligence has also been used in astonishing ways in the dental industry.^{1,2} This article reviews oral and maxillofacial radiology-related deep learning publications.

Substances and Techniques:

Search Strategy:

PubMed, Scopus, and IEEE Explore Digital Library searched for "deep learning OR neural network" and "dental AND (diagnostic OR recognition OR classification OR segmentation)" until December 2021.and the results were 144, 33, and 32 search results, respectively. After deleting publications that were not written in English, those that focused on subjects other than dentistry, papers that were not relevant 25 peer-reviewed imaging dentistry, review, editorials, and in-press articles were obtained. This study excluded papers on the multilayer perceptron, an initial field of deep learning, due to its lack of a truthful end-to-end learning method—it tools for various derived from pictures using established machine learning algorithms—with shallow networks as well as limited accuracy as layers increase.⁵

Data Extraction:

In addition to author and publishing year, study-specific data on deep learning architecture, trained data volume, evaluation findings, benefits and drawbacks, study purpose, and imaging modalities was collected.

Results:

The data Derive from the selected papers are compile In Table1.

In all studies, CNN was the main network component, but research also included Siamese networks, long-short-term memory since 2021, there have been articles released in the discipline of dental that are based on CNN, and as a result, there have been an increasing number of dental papers published that use CNN (Feg.1).

From 100 units to 1000 units, the maximum size of training datasets increased (Feg.2).

Results for general applications were favorable in the majority of the published works that made use of pretrained networks like Alex net, VGG, Google Net, and Inception v3.31However the management chart of CNN networks shifts from shallow layers to deeper, issue, home-made, or complex networks. Numerous dental fields were studied. Deep learning studied gums, inflamed gums, dental arch, bone loss, and anatomy landmarks (Table 2).

In combination with the aforementioned topics, research has been conducted on a number of different imaging modalities. Intraoral, panoramic, and concave computed tomography are

ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

used together to diagnose inflamed gums (CBCT). Restorative dentistry studies have examined confocal tomography, quantifiable light-induced fluorescence, and intra-oral laser scanners.

Table 1								
S	ummary	of deep learn	ning art	icles in t	he field de	ntistry		
Author	Year	Modality	Num	Meth	Archite	Cla	Evalu	Accu
	of		ber	ods	cture	sses	ation	racy
	public		of				Metri	
	ation		Trai				cs	
			ning					
			Data					
AbdullahS.AL-	2022	Image data	371	DL	NAS.Ne	3	Accur	96 %
Malaise AL-		set			t		acy &	
Gaudi et al.							Loss	
Hahira Zhu et	2023	panoramic	3127	DL	CariesN	4	Accur	93.64
al.		radiograph			et		acy	%
		s					2	
Linhong Jiang	2023	panoramic	640	DL	UNet	2	Loss	77 %
et al.		photograp		and	and		and	
		hs		IP	YOLO-		Accur	
					v4		acy	
F. Casalegno al.	2021	Trans illu	185	DL	CNNs	Bin	Accur	85 %
0		mination				ary	acy	
		imaging				5	5	
		(TI)						
Sultan	2022	QLF-	427	DL	Custom	Mul	Accur	75 %
Imangaliyev et		images			CNN	ti	acy,	
al.		C				clas	loss	
						S	and F-	
							1	
							Score	
Yoshihito	2021	oral	1904	Ense	CNN	2	Accur	93 %
Takahashi et		photograp		mble	model		acy	
al.		hic		DL			-	
		pictures		model				
Murcia Paul	2023	X-Ray	1000	DL	Optimiz	5	Accur	89%
Murrain et al.		images	imag	and	ed CNN		acy,	
		-	es	IP			loss	
				techni			and F-	
				ques			1	
				-			Score,	
							Recall	
							and	
							Presidi	

Volume 1, Issue 1, April, 2023 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

							on	
Amir Hussein	2022	X-Ray	95	DI	Segment	Rin	Coeffi	94%
Abdi et al	2022	images	selec		ation	arv	cient	J-170
Tibul et al.		iniuges	ted		unon	ury	Specif	
			from				icity	
			2000				and	
			imag				Sensiti	
			es				vity	
Vanessa De Ar	2021	Pv.Radiom	105	DL	ANN	Bin	Accur	98%
aujo Farina et		ics	imag			ary	acy	
al.			es			5	and	
							Loss	
Reves LT et al.	2022	Dental	Diffe	ML	N/A	Bin	Accur	74%
·		images	rent	and		ary	acy,	to
		C C	datas	DL		and	precisi	98%
			ets			Mul	on and	
						ti	Recall	
						clas		
						s		
Joe Yang et al.	2023	X-Ray	196	DL	CNN	Bin	F1-	75%
						ary	Score	
Prerna Singh et	2023	panoramic	400	DL	Deep	Bin	Accur	95%
al.		image		and	CNN	ary	acy	
				IP				
Zhang et al.	2021	intraoral	1000	CNN	Deep	Bin	Accur	96%
					CNN	ary	acy	
Imangaliyev et	2023	QLF	427	CNN	CNN	2	F1-	75%
al.					Model		Score	
Eun et al.	2023	intraoral	600	CNN	CNN	Bin	Accur	79%
					Model	ary	acy &	
							Loss	
De Tobel et al.	2023	panorama	400	ML	CNN	Bin	Accur	80%
					Model	ary	acy	
Rana et al.	2023	QLF	405	DL	Deep	2	Accur	92%
					CNN		acy &	
							Loss	
Lee et al.	2021	Lateral	300	CNN	Deep	Mul	Accur	76%
		Cephalom			CNN	ti	acy &	
		etr				clas	Loss	
		radiograph				S		
		У						

Volume 1, Issue 1, April, 2023 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

Milki et al.	2022	Radiograp	1000	DL	ANN	3	Accur	96%
		hy					acy &	
							Loss	
Yang et al.	2023	Image	196	DL	CNN	2	Accur	89%
							acy &	
							Loss	
Torosdagli et	2023	X-ray	500	DL	ANN	Bin	F1-	93%
al.				and		ary	Score	
				ML				
Karimian et al.	2022	panorama	800	Dl	UNet	2	Accur	98%
							acy	
Egger et al.	2022	panoramic	1150	DL	CNN	2	Accur	91%
		image			Model		acy	
Chu et al.	2022	panoramic	1400	DL	CNN	3	Accur	98%
		radiograph		and			acy,	to
		S		ML			Precisi	95%
							on and	
							Recall	
Lee et al.	2023	X-ray	1740	DL	CNN(V	Bin	Accur	99%
					GG19)	ary	acy &	
						and	Loss	
						Mul		
						ti		
						clas		
						S		

CNN: Convolutional neural network, Long-term short-term memory,

QLF: Quantitative light-induced fluorescence, OCT: confocal tomography, MABO: simple average best crossover, DSC: dice similarity coefficient. AUC: Curve area CNNs were the main network component in all studies, but some also used long-short-term memory and Siamese networks. Since 2021, CNN-based dentistry papers have increased (Figure.1).

Volume 1, Issue 1, April, 2023 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

Figure. 1. Number of articles from 2021 to 2023.

Figure. 2. Median size of training datasets from 2021 to 2023.

Pretrained networks like Alex net, VGG, Google Net, and Inception v3 performed well in general purpose papers. ³¹ CNN networks evolve from subsurface depth to deeper or issue residence or complex networks.

These studies covered various dental fields. Deep learning was used to study gingiva, periodontium, dental curve, bone loss, and anatomical landmarks (Table 2).

Volume 1, Issue 1, April, 2023 ISSN (E): 2810-6393 Website: https://academiaone.org/index.php/2

Table 2. Frequency of subjects in deep learning articles.				
Subject	Frequency			
Tooth related	14			
Dental plaque	4			
Gingiva or periodontium	2			
Osteoporosis	2			
Etc.	3			

Imaging techniques have been studied with the above subjects. Dental disease is being diagnosed using intraoral and panoramic radiographs and 3-D concave computed tomography (CBCT). Quantifiable lamp fluorescent dyes, optical coherence tomography (OCT), and intraoral laser scanners have been studied in dentistry.

Discussion:

Although conventional CAD is challenging to construct and tune, medical professionals have used it to get an independent advice. CAD has recently integrated many deep learning methods, with promising results for medical applications. ^{32,33} Deep learning studies in maxillofacial and oral radiology must fill gaps to advance both quantitative and qualitative uses in dentistry.

However, because it was challenging to make impartial comparisons between the studies because all of the data sets utilized in the study that was analyzed in this article were housed internally. One and only one study attempted to assess the reliability of created networks by making use of other public datasets.²³ It is necessary to make efforts to build a public dataset, particularly in the area of medicine.³⁴ to create algorithmic solutions that can be implemented in clinical settings. Researchers must distribute their paper data after removing personal information, and each country must provide legal and institutional assistance.^{35,36} In the field of dentistry, there is a further requirement for the establishment of a central, open repository that is capable of effectively collecting, cataloguing, and archiving data that is freely accessible to the public.

For deep learning to succeed in dentistry, training datasets should increase. However, most research had an accuracy of less than 90% and used small sets of data (with fewer than 1000 units in each group). This accuracy is below the clinically expected 98%–99%.³⁷ Due to its end-to-end nature and direct feature learning from data, deep learning calls for a great deal of data. To achieve 98% validation accuracy using deep learning for CT data anatomical classification, each group needed at least 1,000 data sets. For 99.5% accuracy, each group needed 4,092 data sets.³⁸Cone beam calculated value tomography (CBCT), the most common dental 3D imaging modality, does not use clearly delineated Hounsfield unit values. Each exposure changes the pictures' image pixels.³⁹ The patient's position affects radiographic image quality and magnification in dental practices.⁴⁰ Thus, trans-hospital or hybrid data sets from multiple machines and circumstances may be needed to achieve clinically meaningful high accuracy. Due to dental pictures' nature. To make medical deep learning possible, a large-scale dental care public dataset is essential.

Additionally, dental data uniformity and data set standardization are crucial. CBCT images vary depending on brand, equipment, and exposure. Deep learning research may struggle.

Machine-by-machine data learning is difficult because models learned on one machine may not apply to others. Data collection and learning are difficult. Despite European, German, and English efforts to recommend CBCT picture quality, no standard has been established.⁴¹ To make deep learning-based 3-dimensional diagnostics possible, a global standard for CBCT image quality must be established soon.

A significant number of publications have made use of preprocessed photos by manually trimming the area of interest. Because of this, it is difficult to accurately assess and compare the findings because of the inaccuracies that are caused by the manual procedure. There have been a few papers9,10,19 that have demonstrated networks that trained by extracting features into regions of a particular size. However, this method has its drawbacks due to the fact that the network cannot learn the entire image; rather, it concentrates its attention on a certain portion of the picture. Down sampling, which can result in the loss of essential image information, was utilized in some of the papers.21, 22,24According to the discussion of the limits in some articles, these decisions appear to have been taken because of restrictions on the quantity of data or the amount of computer power that was available.21,22 However, According to the explanation of the limitations in some publications, these judgments appear to have been made because there were restrictions on the data being collected or the amount of computing power that really was available.

Medicine is increasingly using AI. IBM's Watson helps doctors make crucial clinical decisions.⁴² Due to the difficulty of unifying dental radiology, clinical accuracy of AI in the dental field must be verified using a broad range of instances and imaging modes before AI can play a larger role in diagnostic recommendations. Before AI becomes more important, this must be done.

AI algorithms operate like black boxes, making it difficult for people to recognize or change diagnostic criteria.⁴³ To improve artificial intelligence's dependability, a visualization and editing device for deep neural networks must be human-friendly (AI).

References

- Song, I. S., Choi, E. S., Kim, E. S., Hwang, Y., Lee, K. S., & An, K. H. (2023). Associations of Preterm Birth with Dental and Gastrointestinal Diseases: Machine Learning Analysis Using National Health Insurance Data. *International Journal of Environmental Research and Public Health*, 20(3), 1732.
- Mohammad-Rahim, H., Rokhshad, R., Bencharit, S., Koi's, J., & Schwendicke, F. (2023). Deep learning: A primer for dentists and dental researchers. *Journal of Dentistry*, 104430.
- Andrade, K. M., Silva, B. P. M., de Oliveira, L. R., & Cur, P. R. (2023). Automatic Dental Biofilm Detection Based on Deep Learning. *Journal of Clinical Periodontology*.de Oliveira, R. A., & Bolin, M. H. (2023). Deep learning for power quality. *Electric Power Systems Research*, 214, 108887.
- 4. Liu, X., Ghazi, K. H., Han, F., & Mohamed, I. I. (2023). Review of CNN in aerial image processing. *The Imaging Science Journal*, 1-13.
- 5. Yuan, F., Zhang, Z., & Fang, Z. (2023). An effective CNN and Transformer

complementary network for medical image segmentation. *Pattern Recognition*, 136, 109228.

- Ba-Hat tab, R., Barhop, N., Osman, S. A. A., Nicer, I., Ode, A., Assad, A. & Tammie, F. (2023). Detection of Periodical Lesions on Panoramic Radiographs Using Deep Learning. *Applied Sciences*, 13(3), 1516.
- Ba-Hat tab, R., Barhop, N., Osman, S. A. A., Nicer, I., Ode, A., Assad, A., & Tammie, F. (2023). Detection of Periodical Lesions on Panoramic Radiographs Using Deep Learning. *Applied Sciences*, 13(3), 1516.
- 8. Park, W. J., & Park, J. B. (2021). History and application of artificial neural networks in dentistry. *European journal of dentistry*, *12*(04), 594-601.
- 9. Mupparapu, M., Wu, C. W., & Chen, Y. C. (2022). Artificial intelligence, machine learning, neural networks, and deep learning: Futuristic concepts for new dental diagnosis. *Quintessence international (Berlin, Germany: 1985)*, 49(9), 687-688.
- Burt, J. R., Torosdagli, N., Kosraean, N., Ravi Prakash, H., Mortise, A., Tissavirasingham, F& Bagri, U. (2023). Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. *The British journal of radiology*, 91(1089), 20170545.
- 11. Tribunal, J. R., & Dorado, J. (Eds.). (2006). Artificial neural networks in real-life applications. IGI Global.
- 12. Panchal, G., Gantry, A., Kostas, Y. P., & Panchal, D. (2021). Behavior analysis of multilayer perceptron's with multiple hidden neurons and hidden layers. *International Journal of Computer Theory and Engineering*, *3*(2), 332-337.
- 13. You, W., Halo, A., Li, S., Wang, Y., & Xia, B. (2022). Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. *BMC Oral Health*, 20, 1-7.
- Eun, H., & Kim, C. (2016, December). Oriented tooth localization for periodical dental X-ray images via convolutional neural network. In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) (pp. 1-7). IEEE.
- 15. De Tobel, J., Ramesh, P., Vandermeulen, D., & Thevissen, P. W. (2021). An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. *The Journal of forensic odontoid-stomatology*, *35*(2), 42.
- 16. Rana, A., Yanez, G., Wong, L. C., Gupta, O., Mufti, A., & Shah, P. (2017, November). Automated segmentation of gingival diseases from oral images. In 2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT) (pp. 144-147). IEEE.
- Lee, H., Park, M., & Kim, J. (2017, March). Cephalometr landmark detection in dental x-ray images using convolutional neural networks. In *Medical imaging 2017: Computer-aided diagnosis* (Vol. 10134, pp. 494-499). SPIE.
- Prajapati, S. A., Negara, R., & Metra, S. (2017, August). Classification of dental diseases using CNN and transfer learning. In 2017 5th International Symposium on Computational and Business Intelligence (ISCBI) (pp. 70-74). IEEE.

- Imangaliyev, S., van der Vein, M. H., Volgenant, C., Loos, B. G., Kaiser, B. J., Crielaard, W., & Levin, E. (2017). Classification of quantitative light-induced fluorescence images using convolutional neural network. *Preprint: 1705.09193*.
- Miki, Y., Muramatsu, C., Hayashi, T., Zhou, X., Hara, T., Katsumata, A., & Fujita, H. (2017). Classification of teeth in cone-beam CT using deep convolutional neural network. *Computers in biology and medicine*, 80, 24-29.
- 21. Okay, A. B. (2017, October). Tooth detection with convolutional neural networks. In 2017 Medical Technologies National Congress (TIPTEKNO) (pp. 1-4). IEEE.
- 22. Miki, Y., Muramatsu, C., Hayashi, T., Zhou, X., Hara, T., Katsumata, A., & Fujita, H. (2017, March). Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification. In *Medical Imaging 2017: Computer-Aided Diagnosis* (Vol. 10134, pp. 874-879). Spied.
- 23. Murata, S., Lee, C., Tonkawa, C., & Date, S. (2017, October). Towards a fully automated diagnostic system for orthodontic treatment in dentistry. In 2017 IEEE 13th international conference on e-science (e-science) (pp. 1-8). IEEE.
- 24. Cu, X., Liu, C., & Sheng, Y. (2018). 3D tooth segmentation and labeling using deep convolutional neural networks. *IEEE transactions on visualization and computer graphics*, 25(7), 2336-2348.
- 25. Du, X., Chen, Y., Zhao, J., & Xi, Y. (2018, July). A convolutional neural network based auto-positioning method for dental arch in rotational panoramic radiography. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2615-2618). IEEE.
- 26. Zhang, K., Wu, J., Chen, H., & Lye, P. (2018). An effective teeth recognition method using label tree with cascade network structure. *Computerized Medical Imaging and Graphics*, 68, 61-70.
- 27. Yang, J., Xian, Y., Liu, L., Xia, B., Cao, Z., & Goo, C. (2018, July). Automated dental image analysis by deep learning on small dataset. In *2018 IEEE 42nd annual computer software and applications conference (COMPSAC)* (Vol. 1, pp. 492-497). IEEE.
- 28. Wirt, A., Midrashim, S. G., & Weser, S. (2018). Automatic teeth segmentation in panoramic X-ray images using a coupled shape model in combination with a neural network. In *Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part IV 11* (pp. 712-719). Springer International Publishing.
- 29. Torosdagli, N., Liber ton, D. K., Vera, P., Sin can, M., Lee, J. S., & Bagri, U. (2018). Deep geodesic learning for segmentation and anatomical land marking. *IEEE transactions on medical imaging*, *38*(4), 919-931.
- 30. Karimian, N., Saleh, H. S., Mahdi an, M., Alnajjar, H., & Tatiana, A. (2018, February). Deep learning classifier with optical coherence tomography images for early dental caries detection. In *Lasers in Dentistry XXIV* (Vol. 10473, pp. 10-17). SPIE.
- 31. Lee, J. H., Kim, D. H., Jong, S. N., & Choi, S. H. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. *Journal of dentistry*, 77, 106-111.

- 32. Lee, J. H., Kim, D. H., Jong, S. N., & Choi, S. H. (2018). Diagnosis and prediction of periodontal compromised teeth using a deep learning-based convolutional neural network algorithm. *Journal of periodontal & implant science*, *48*(2), 114-123.
- 33. Egger, J., Pfarrkirchner, B., Garner, C., Lindner, L., Schmalstieg, D., & Waller, J. (2018, July). Fully convolutional mandible segmentation on a valid ground-truth dataset. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 656-660). IEEE.
- 34. Lee, J. S., Adhikari, S., Liu, L., Jong, H. G., Kim, H., & Yoon, S. J. (2019). Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study. *Dent maxillofacial Radiology*, 48(1), 20170344.
- 35. Chu, P., Bo, C., Liang, X., Yang, J., Megalooikonomou, V., Yang, F. & Ling, H. (2018, July). Using octuplet Siamese network for osteoporosis analysis on dental panoramic radiographs. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2579-2582). IEEE.
- 36. Kim, Y. D., Jang, T., Han, B., & Choi, S. (2016). Learning to select pre-trained deep representations with Bayesian evidence framework. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 5318-5326).
- 37. Cheng, J. Z., Ni, D., Chou, Y. H., Qin, J., Tiu, C. M., Chang, Y. C., & Chen, C. M. (2016). Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. *Scientific reports*, 6(1), 1-13.
- 38. Suzuki, K. (2017). Overview of deep learning in medical imaging. *Radiological physics and technology*, *10*(3), 257-273.
- 39. Greenspan, H., Van B., & summers, R. M. (2016). Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. *IEEE transactions on medical imaging*, 35(5), 1153-1159.
- 40. Berman, J. J. (2002). Confidentiality issues for medical data miners. *Artificial intelligence in medicine*, 26(1-2), 25-36.
- 41. Cooper, T., & Colman, J. (2005). Managing information security and privacy in healthcare data mining: State of the art. *Medical Informatics: Knowledge Management and Data Mining in Biomedicine*, 95-137.
- 42. Weise, J., & Lorenz, C. (2016). Four challenges in medical image analysis from an industrial perspective. *Medical image analysis*, *33*, 44-49.
- 43. Cho, J., Lee, K., Shin, E., Choy, G., & Do, S. (2015). How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? *Arrive preprint 1511.06348*.
- 44. Pauses, R., Araki, K., Siewerdsen, J. H., & Thongvigitmanee, S. S. (2015). Technical aspects of dental CBCT: state of the art. *Dent maxillofacial Radiology*, 44(1), 20140224.
- 45. Devlin, H., & Yuan, J. (2013). Object position and image magnification in dental panoramic radiography: a theoretical analysis. *Dent maxillofacial Radiology*, 42(1),

29951683-29951683.

ISSN (E): 2810-6393

46. de Las Hears Gala, H., Torres in, A., Dash, A., Ramp ado, O., Delis, H., Grin, I. H., ...
& Services, C. (2017). Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report). *Physical Medical*, *39*, 67-72.

Website: https://academiaone.org/index.php/2

- 47. Chen, Y., Argentines, J. E., & Weber, G. (2016). IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. *Clinical therapeutics*, *38*(4), 688-701.
- 48. Anifowose, F. A. (2011, March). Artificial intelligence application in reservoir characterization and modeling: whitening the black Box. In *SPE Saudi Arabia section Young Professionals Technical Symposium*. One Petro.